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Summary

This report describes a method we developed to design and select the sample of Air Force per-
sonnel who would be asked to participate in a survey on cultural attitudes. The survey is long 
and complex and has many competing goals, so the design problem has no simple answer. In 
the simplest surveys, one seeks only to estimate a population parameter—say, the proportion 
of the population that prefers chocolate to vanilla—from the responses of the people in the 
sample. But, in this case, the design considered the following:

We intended to build multiple three- and four-way crosstabs from the responses (e.g., by 
grade and AFSC family,1 and by grade and gender), so we needed to select a sample from 
which we could estimate differences in population parameters in different three- or four-
way crosses with the desired precision.
Because the survey was very long, we split the sample into three sections and asked the 
people assigned to each section to respond to only part of the survey. Thus, we needed to 
trade off sample size (and therefore precision) in one section versus the others.
Finally, our survey (which we refer to as the CULTURE survey) was fielded shortly after 
another survey (the HEALTH survey), and because we feared that survey fatigue would 
reduce the response rate among people in both samples, we wanted to design a sample for 
our survey that overlapped as little as reasonably possible with the other survey’s sample. 

Our method partitioned the population into cells. By the definition of a partition, each 
member of the population belonged to a unique cell. We formed the cells by taking the eight 
characteristics needed to define all the three- and four-way crosstabs mentioned above and 
using them to define one gigantic eight-way cross classification. There were over a million cells. 
More than 98 percent of them were empty, and almost half the nonempty cells contained 
only one person. For example, there just are not very many company-grade female, Hispanic, 
Roman Catholic pilots in the Air National Guard who are assigned to the Air Combat Com-
mand. (Our method ignores the empty cells, since they contain no personnel to select for our 
sample.)

We recovered a particular three- or four-way crosstab from the cells (i.e., the eight-way 
classification) by summing over characteristics not used to define that crosstab. Aggregate data 

1 The Air Force Specialty Code (AFSC) is a code for the skills an individual possesses.

•

•

•
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obtained in this way are called marginal data, and we will refer to each three- or four-way cross 
as a marginal cross.

Our method used linear programming, a well-known procedure for optimizing (maxi-
mizing or minimizing) a linear function subject to linear constraints. The primary variables in 
our linear program were the expected number of people drawn from each cell for assignment 
to each section of the survey. (For large cells, there was no practical difference between the 
number drawn and the expected number. For a cell containing only one person, the expected 
number was the probability that the person was in the sample.) The constraints ensured that

the number of people drawn from a cell could not exceed the cell population
the sample taken from each marginal cross was at least as large as a specified quantity
the sample taken from each cell was at least as large as another specified quantity. This 
quantity was selected to ensure that an adequate number of people from the cell were in 
the sample for every marginal cross to which the cell contributed.

The last two constraint types ensured that estimates of population parameters would 
have, as far as possible, the desired precision.

Merely because our method used linear programming—which solves an optimization 
problem—did not mean that we regarded the sample it designed to be “optimal” in a real-
world sense. The CULTURE and HEALTH surveys each had its own desired precision, as did 
each of the sections within the CULTURE survey, and we could only improve the precision of 
one survey/section at the expense of another.2 So we embedded a number of “design levers” in 
the linear program. By manipulating them, we caused the method to generate sample designs 
that gave different priorities to the various surveys/sections. Flesh-and-blood humans exam-
ined the various designs and, ultimately, picked one.

To aid in this process, we defined a number of summary measures of design quality. An 
obvious one was total sample size. Others were counts of “problem crosses,” i.e., marginal 
crosses for which the sample did not satisfy the last two constraint types and hence would not 
yield the desired precision. By varying the threshold at which we considered a cross to be a 
problem, we could construct a whole family of measures.

It seemed to the survey team that the HEALTH survey had rather little precision unless 
it received a very high priority, but this caused the CULTURE survey to lose too much preci-
sion. This observation persuaded the survey team to investigate the effect of allowing the two 
samples to overlap. Indeed, giving the HEALTH survey a high priority causes the CULTURE 
survey to lose much less precision in the samples with overlap than in those without. 

The last step in the process was to select an actual sample. The linear program solution 
that we ultimately chose gave us the expected number of people to draw from each cell for 
each section. We developed a variant of systematic sampling to choose the actual individuals 
to include in the sample. In our method, each member of the population had some chance of 

2 The CULTURE survey was partitioned into three sections, so assigning a person to a section also assigned that person 

to the CULTURE survey; anyone assigned to the CULTURE survey had to be in one of the three sections. The HEALTH 

survey was not divided into sections, so we do not use the term “section” when referring to the HEALTH survey. A person 

assigned to the overlap was assigned to both the HEALTH survey and a section within the CULTURE survey.

•
•
•
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being assigned to any survey/section. The sample our method selected matched the linear pro-
gramming solution quite closely. Both the overall sample and the sample taken from each large 
cell had sizes close to the expected sizes calculated by the linear program.

There is no guarantee, however, that the precision of estimates we calculate when we 
analyze the survey responses will equal the precision we sought when we designed the sam-
ple. The actual precision will depend on factors that were unknown when we designed 
the sample (for example, the actual response rate). Moreover, we could only design the sam-
ple to ensure adequate precision of estimates we anticipated we were going to make. Once we 
begin analyzing the survey responses, we may discover that some quantities we did not antici-
pate estimating are much more interesting.

In short, we will inevitably judge the adequacy of the sample using standards that we do 
not fully know at the time we design the sample. We can only guess what those standards will 
be, design the sample to our guess, and let the chips fall where they may.
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CHAPTER ONE

Introduction

In the summer of 2005, a RAND Corporation study team was asked to assist the Air Force in 
assessing Air Force culture and its relationship to a range of behaviors it deemed aberrant. We 
developed a questionnaire for a survey of Air Force personnel on cultural attitudes (henceforth 
called the CULTURE survey), and designed a sample of the population to receive email invita-
tions to participate in the survey. The design needed to meet a number of goals that may con-
cern other survey researchers as well: (1) minimize the number of people asked to participate so 
as to reduce the survey burden on a population already frequently invited to take surveys; (2) 
reflect response rates we could anticipate from previous surveys of the population; (3) ensure 
adequate representation of a number of minorities of interest (rank, job type, race and ethnic-
ity, gender, religion, and component1); (4) sample enough people in each of the overlapping 
subset categories of interest (e.g., black female noncommissioned officers [NCOs]) to allow for 
statistically meaningful comparisons; and (5) minimize (to zero, if possible) the number of ser-
vice members invited to take both this survey and another survey (the HEALTH survey) on 
an overlapping set of topics scheduled for the same time period.

We describe here the method we developed for designing joint samples for the 
CULTURE and HEALTH surveys. The Air Force personnel inventory consists of approxi-
mately 350,000 active, 105,000 Air National Guard, 75,000 Air Force Reserve, and 150,000 
civilian personnel. While our survey drew samples from all these groups, in this report we 
illustrate the method for the Guard and Reserve only. We wish to select a sample of these 
individuals that is large and diverse enough to allow us to draw conclusions about how their 
attitudes are related to their various personal and professional characteristics.

The many competing goals of this survey preclude there being a sample design that is best 
in every way—i.e., an optimal design (such a point was made in Adams et al., 2003). Rather, 
the design must strike a balance among the many goals. But even though there is no opti-
mal design, some designs are better than others. Our methodology generates relatively good 
samples for flesh-and-blood humans to examine. The humans must exercise their judgment in 
deciding which sample design to choose.

Next, we describe the factors that entered into the design of the sample. This is perhaps 
most easily done if we begin with a very simple survey and successively add layers of complex-
ity to it.

1 By component, we mean Active Duty, Air National Guard, Air Force Reserve, or Air Force civilians.
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Step 0: A Simple Survey

The simplest surveys—the ones described in the early chapters of textbooks on sampling (e.g., 
Cochran, 1977; Kish, 1995)—seek to estimate the average value of a variable Y in a popula-
tion of size N from data on that variable measured for a sample. For example, one might wish 
to determine the fraction of a population that prefers vanilla ice cream to chocolate from the 
answers given by a sample from that population. It makes sense to design a sample that is 
smallest for a given precision or, if the cost of collecting data differs for different members of 
the population, to design a sample that is cheapest for a given precision. We would call this an 
optimal sample.

Step 1: A Survey to Support Multiple Crosstabs

The next step in complexity occurs if we want to estimate the average value of the variable Y,
not in the entire population but in specified subsets of the population. If the subsets are mutu-
ally disjoint, the problem reduces to multiple simple surveys. But if the subsets overlap, the 
data collected on each member of the population may contribute to the average value of Y in 
several subsets.

In our case, the subsets are the crosses in three- and four-way crosstabs defined by known 
characteristics of members of the population. For example, we wished to tabulate responses 
of Air Force Reserve personnel by grade and AFSC family,2 by grade and major command, 
by grade and gender, and by grade and race. Each respondent had a grade, an AFSC family, a 
major command, a gender, and a race, and data from each respondent therefore contribute to 
one cross in every table.

If we are willing to specify a desired precision for each cross, we can still design a sample 
that is smallest or cheapest, and that we might still, therefore, be willing to call “optimal.” 
Chromy (1987) discusses exactly this problem.

Step 2: A Survey with Multiple Sections

Next, we split the survey into sections. The CULTURE survey was so long that we feared 
many would-be respondents would quit in the middle—or even not start at all—if they were 
asked to complete every question. So each respondent was assigned to one of three sections 
(imaginatively called A, B, and C). We asked each respondent to answer a group of questions 
that constituted the “core” of the survey, and a further set of questions specific to the section 
he or she was assigned to.

Sections A, B, and C are in direct competition with one another, in that assigning a 
person to one section precludes his or her being in another. Assigning him or her to section A 
therefore sacrifices precision in sections B and C. If there are enough people in the population 

2 The Air Force Specialty Code (AFSC) is a code for the skills an individual possesses.
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to simultaneously achieve the desired precision in all the affected crosses, there is no problem. 
But if there are not enough people, we must trade off precision in one section for precision in 
another. We can no longer call any particular sample optimal.

Step 3: Multiple Competing Surveys

Finally, a second survey of Air Force personnel was being fielded by the Air Force Surgeon 
General to assess the health of Air Force personnel (henceforth called the HEALTH survey). 
It cross-tabulated personnel on different characteristics. We had the opportunity to design 
samples for both surveys, and we sought to design samples that would balance the competing 
desires of the two survey groups. As with the competing sections within our own survey, more 
precision in one survey generally implies less precision in the other. Thus, no particular pair of 
samples should be considered optimal.

We posited survey fatigue as the mechanism by which the HEALTH survey, which was 
fielded first, could affect the CULTURE survey. An individual in only one sample would 
respond with one probability (nominally 50 percent).3 We assumed that an individual in both 
samples would respond with the same probability to the HEALTH survey but with a lower 
probability (nominally 25 percent) to the CULTURE survey.4

Multiple Crosstabs Require Thousands of Small Cells

As mentioned, we wished to tabulate responses of Air Force personnel by various combina-
tions of personal and professional characteristics. Earlier we listed five of the characteristics we 
considered: grade (six values), AFSC family (nine values), major command (six values), gender 
(two values), and race (five values). There are 6  9  6  2  5 = 3,240 possible combinations of 
values for these five characteristics alone, and adding the remaining characteristics we consid-
ered (component, faith, and installation) expands the number to over a million. In fact, there 
were almost 20,000 different combinations of characteristics possessed by at least one person 
in the Air National Guard or Air Force Reserve. Each of these nonempty combinations defines 
a cell from which we sample.

The sheer number of cells poses neither a conceptual nor a computational problem. Stan-
dard statistical formulas remain valid for any number of cells. The software we use easily 
accommodates problems much larger than ours.

However, many of our cells are small. The average cell contains only nine people, and 
over 8,000 cells contain only one person. (Most of the approximately 180,000 Reservists and 
Guard members, of course, are in a relatively few large cells.)

3 There was a 50-percent participation rate in the 2003 Air Force Climate Survey. This survey, which all Air Force person-

nel were urged to take, measured how people felt about leadership, supervision, training, recognition, and other aspects of 

the Air Force (personal communication from Air Force Manpower Agency [AFMA], which conducted the survey).

4 The 25-percent response rate for people invited to take both surveys is conjecture because we had no data to base it on.
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The presence of small cells makes it impractical to draw a stratified random sample—i.e., 
a simple random sample of predetermined size from each cell. Instead, we employ a sampling 
method (described in Chapter Six) that has a nonzero probability of assigning each member of 
the population to every survey/section. The probability of a given assignment is the same for all 
members in the same cell, but it generally differs for different cells. The method ensures that 
the size of the sample taken from a large cell is close to the expected sample size for that cell, 
so if there were no small cells, we would very nearly obtain a stratified random sample. The 
method also ensures that the overall size of the sample is very close to the expected size.

The proper formulas for analyzing the survey responses depend on the sample selection 
method. Horvitz and Thompson (1952) present general formulas for samples that, like ours, 
are drawn without replacement from finite populations, with unequal but positive selection 
probabilities.

Cells and Crosses

We use the terms cell and cross (or marginal cross) throughout this report, so it is worthwhile to 
describe them and the relationship between them more fully. Each individual in the popula-
tion has values for each of eight personal or professional characteristics—component, grade, 
major command, AFSC family, race, gender, faith, and installation. A cell consists of all people 
who have the same values for all eight of these characteristics. Since no person has two differ-
ent values for any characteristic, the cells are disjoint. A (marginal) cross, on the other hand, 
consists of all people who have the same values for only some selected characteristics but may 
have different values for the remaining characteristics. Thus a cross defined by component = 
Air National Guard, grade = Airman, and AFSC family = Logistics will contain all people who 
share those values of component, grade, and AFSC family, but it will include people with dif-
ferent genders (both female and male), different faiths (Protestant and Roman Catholic, as well 
as other faiths), and so on. It is evident that a cross is a union of cells, and the data in the cross 
are obtained by summing over those cells. Data obtained in this way are generally referred to 
as marginal data; hence our name, marginal cross.

Outline of the Method

Our method is based on linear programming, a technique for solving problems of the follow-
ing form (e.g., see Hillier and Lieberman, 2005): Given constants aij , bi

, and c j
for i m1,...,

and j n1,..., , find values for the variables x j  that
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(1.1)

In our method, each variable x
j corresponds to the expected number of people from 

each cell invited to take either each section of the CULTURE survey, the HEALTH survey, or 
both HEALTH and a section of CULTURE. Some of the constraints ensure that no cell con-
tributes more responses than possible, taking its population and response rates into account. 
Other constraints ensure that the “core” sample for CULTURE equals the union of our A, B, 
and C samples. Still other constraints ensure that, to the degree possible, each marginal cross 
we wish to examine contains a sample that is large and diverse enough to provide the desired 
precision.

Others have suggested formulating sample design problems as optimization problems. 
Chromy (1987) addressed much the same problem we do, but formulated it with nonlinear 
constraints. This is perhaps more natural, since Chromy’s primary constraint was intended 
to restrict the size of the standard error of quantities estimated from survey results, and the 
standard error of an estimate is not linear in the size of the samples drawn from the various 
cells.5 But no software package was readily available to us that would solve a large nonlinear 
optimization problem, and solving such problems is problematic in any case. By formulating 
the problem with linear constraints, we make it possible to use a software package called the 
General Algebraic Modeling System (GAMS), which both provides a means to describe the 
problem algebraically and reliably solves very large linear programs.

Lu and Sitter (2002) proposed a method for designing survey samples that uses linear 
programming. In effect, they address a problem with a single cross to which all cells belong 
but which is otherwise very similar to ours. They specify the overall size of the sample as an 
input, and their method guarantees that their sample will have the desired size; we specify 
the desired sample size for each marginal cross, but it may not be possible to achieve the 
desired size for every cross. They insist that the sample drawn from each cell should be as 
nearly as possible proportional to the size of the cell; we impose similar proportionality con-
straints for each marginal cross, which also may not be achievable. The main difference is that 
they calculate a probability distribution over all admissible allocations of the sample to the 
cells, whereas we calculate only the expected allocation. The resulting combinatorial explo-
sion leads Lu and Sitter to a much larger linear program than we would obtain for the same 
problem. Indeed, Lu and Sitter (2002, p. 200) “give some examples with from 80 to 300 
stratification cells to illustrate the ability of the new methodology to handle large problems.”

5 Chromy uses the variance formula for stratified random sampling, which is inappropriate for our problem. But Chromy’s 

problem could be reformulated to use a Horvitz-Thompson formula.
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To design a sample, we solve two linear programs in sequence. Because the response rates 
are less than 100 percent and because the two surveys and the sections of the CULTURE 
survey compete with one another for respondents, it is not possible to meet all the constraints 
on precision. In the first problem, we minimize the total number of additional people we would 
need to achieve the desired sample size for every cross and simultaneously meet the proportion-
ality constraints, summed over all marginal crosses. For the second problem, we constrain the 
shortfall for each marginal cross to the minimum value computed in the first problem, and we 
minimize the total size of the samples, counting people twice if they are in the overlap.6

Even though we solve an optimization problem to obtain the sample, we do not consider 
it to be “optimal” in the real-world sense. We have included a handful of parameters in the 
model—call them design levers—that do not have obvious “best” values, and by varying these 
levers we can generate a wide range of samples for flesh-and-blood humans to evaluate. One 
lever, for example, affects the lower bound we place on the precision of estimates the sample in 
each marginal cross can support. Another governs how the population in a cell will be divided 
between the two surveys, if both cannot have all that the surveyors want.

The solution to the two linear programs specifies the expected number of people from 
each cell who should be in our sample. It specifies how many should be assigned to the 
CULTURE survey, the HEALTH survey, or both, and how many in the CULTURE sample 
should be assigned to each section. Now we must construct a list of individuals in the Air Force 
that assigns approximately the specified numbers of people from each cell to each survey/sec-
tion as specified in that design.

We used a variant of systematic sampling (e.g., see Cochran, 1977, Chapter 8; or Kish, 
1995, Chapter 4). In the standard version of systematic sampling, one takes every kth indi-
vidual of the population after a random start. In our problem, however, individuals of the 
population are not simply included or excluded; rather, they are either excluded or assigned 
to a survey/section. Moreover, the probability for each assignment is not the same for all indi-
viduals (although the probability is the same for individuals in the same cell). Our variant of 
systematic sampling accommodates these complexities.

Plan of the Report

In Chapter Two, we discuss the data in the Air Force personnel file from which we selected 
our sample. Chapter Three presents constraints on the numbers of individuals who can be in 
each section of our sample—both in the other survey sample and in the overlap. Basically, 
these constraints ensure that the number of people sampled from each cell is no greater than 
the population of that cell.

Chapter Four formulates the constraints that govern precision. One kind of precision 
constraint requires the sample from each marginal cross to exceed a specified threshold. The 
other kind requires the sample from each cell in the marginal cross to exceed a specified pro-

6 The method is easily modified to find the sample that yields the greatest precision given constraints on sample size. One 

merely imposes constraints on sample size in the first problem. This eliminates the need to solve the second problem.
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portion of the cell’s population. Together, these constraints ensure that the sample from each 
marginal cross is large and diverse enough to yield reasonably precise estimates for the entire 
population of the cross.

In Chapter Five, we report a range of samples designed by the method and discuss trade-
offs. As mentioned earlier, the several surveys/sections compete for participants. If the terms 
of that competition favor one survey/section, its sample size will increase, and estimates made 
from its sample will have greater precision (smaller variances). But estimates made for marginal 
crosses in the other surveys/sections will be less precise.

In Chapter Six, we describe how we selected the sample of individuals from the Air Force 
personnel file who will be asked to take the survey. We use the solution generated by our 
method to specify the probabilities that each individual will be included in the sample asked 
to take each survey/section.
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CHAPTER TWO

Personnel Data

Our primary source of data is the Air Force personnel file, a database maintained by the Air 
Force that describes the history and current status of all its military personnel. The linear pro-
grams we formulate require personnel inventories obtained from the personnel file, by cell. 
Once we have designed a sample—i.e., determined how many individuals from each cell we 
will ask to take a survey and which survey and section to assign them to—we select specific 
individuals from the personnel file in numbers that approximately match that design.

We define the cells using eight personal and professional characteristics of each individ-
ual. All eight characteristics correspond to data elements in the Air Force personnel file. Table 
2.1 shows the Guard and Reserve personnel characteristics used by the two surveys and the 
categories we have defined for them. As discussed in Chapter Four, neither survey made use 
of all eight categories (CULTURE used seven in its three- and four-way crosstabs; HEALTH 
used three).

CULTURE and HEALTH did not survey the same populations. The personnel in 
CULTURE but not HEALTH included individuals with a grade of “General Officer” and all 
members of the Air National Guard. CULTURE included people at more installations than 
did HEALTH. The personnel in HEALTH but not CULTURE were mostly members of the 
Individual Ready Reserve (IRR). Thus, we constructed three arrays of personnel inventories, as 
shown in Table 2.2. These arrays are the primary data sources for our linear programs.

One feature to note is the large number of small cells. The average nonempty cell con-
tains about nine people, and over 8,000 cells have only one person. It seems excessive to have 
so many cells and such small ones. But we are cross-classifying on only eight characteristics. 
Except for installations, we have nine or fewer categories per characteristic. Neither eight char-
acteristics nor nine categories per characteristic seem unreasonable. The large number of cells is 
an inevitable consequence of choosing these characteristics and their categories. The Air Force 
personnel file tells us how many people each cell contains, so the fact that there are so many 
small cells is also unavoidable. There just are not very many company-grade female Hispanic 
Roman Catholic pilots in the Air National Guard who are assigned to Air Combat Command 
(ACC).
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Table 2.1
Categories That Define Cells for Guard and Reserve Personnel

Characteristic Categories

Component Air National Guard
Air Force Reserve

Grade Airman
Company grade
Field grade
General Officer
NCO
Senior NCO

Major command ACC
Air Force Materiel Command (AFMC)
Air Force Special Operations Command (AFSOC)
Air Mobility Command (AMC)
Other
None

AFSC family Acquisition
Logistics
Medical
Office of Special Investigations
Other
Other operations
Pilot
Professional
Support

Race Black, non-Hispanic
Hispanic or Latino
Other
Unknown
White

Gender Female
Male

Faith Evangelical
Non-Christian
Protestant
Roman Catholic
Unknown

Installation 38 installations plus “Other”

Table 2.2
Arrays of Guard and Reserve Personnel Inventories

Eligible for . . .
Number of 

Nonempty Cells
Number of 
Personnel

CULTURE only 7,436 120,338

HEALTH only 183 9,207

CULTURE and HEALTH 11,924 46,584
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As mentioned earlier, the presence of small cells makes it impractical to draw a strati-
fied random sample. Because stratified random sampling is so well understood, it might seem 
attractive to merge the small cells into a small number of large strata and to draw a stratified 
random sample from the restratified population. But if one simply merges all small cells into 
a single stratum, one may lose the ability to oversample members of the population with rela-
tively rare characteristics. Avoiding this outcome, or even determining whether it has occurred, 
poses its own difficulties. Moreover, it rankles to allow the tool to dictate the problem. 
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CHAPTER THREE

Constraints on Numbers of People Assigned to Surveys and 
Their Sections

In this chapter and the next, we present the constraints that appear in our linear program. 
This chapter presents constraints that ensure that the sample taken from a cell is no larger than 
the entire population of that cell. These constraints also govern the assignment of people in 
the sample to the CULTURE survey or HEALTH survey or both, and to sections within the 
CULTURE survey. The next chapter presents the constraints that ensure the precision of the 
estimates we make from survey responses.

Variables

The primary variables in the linear program represent the numbers of participants assigned to 
each survey and, for the CULTURE survey, to each section.

Sample(Assign,Cell ) = Number of people in the cell asked to take the survey/section 
indicated by the assignment. For assignments to the CULTURE 
survey, this is limited to people assigned to CULTURE only. 
It does not include people assigned to both CULTURE and 
HEALTH.

Overlap(Assign,Cell ) = Number of people in the cell asked to take both the HEALTH 
survey and one of the sections of the CULTURE survey.

The variables Sample and Overlap are allowed to take on fractional values and therefore 
cannot literally be numbers of people. Instead, we interpret them as expected numbers of 
people.1 Then the ratio of Sample(Assign,Cell ) or Overlap (Assign,Cell ) to the size of Cell is the 
probability that a given individual in Cell will have the indicated assignment.

The assignment to survey and section, denoted by Assign, can take on the values shown 
in Table 3.1.

1 In Chapter Six, we use the values of Sample and Overlap as the basis for selecting actual samples—i.e., lists of 

individuals—for the CULTURE and HEALTH surveys. We can imagine applying our method repeatedly to generate a 

population of samples and taking expectations over that population.
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Table 3.1
Possible Values of Assign

Value Interpretation

Core Assigned to CULTURE survey, any section

A Assigned to CULTURE survey, section A

BC Assigned to CULTURE survey, section B or C

HEALTH Assigned to HEALTH survey

Observe two things about this list. First, the assignments are not mutually exclusive. A 
person assigned to the CULTURE survey will be assigned to one of its sections, and therefore 
two values of Assign will apply. Second, sections B and C of the CULTURE survey do not have 
separate assignments. This is because responses to sections B and C are tabulated in the same 
way (see Chapter Four), and therefore we assign the same number of people from each cell to 
the two sections.

Constraints on Assignments

We define the following:

Pop(Cell) = Number of people in this cell.

CULTURE(Cell ) = “T” (for “True”) if people in this cell are eligible for the CULTURE
     survey;

“F” (for “False”) if they are not eligible.

HEALTH(Cell ) = “T” if people in this cell are eligible for the HEALTH survey;

“F” if they are not eligible.

There are four assignment constraints for each cell. The first limits the total number of 
people assigned from a cell to no more than the total number of people in that cell.

Sample Core Cell Sample HEALTH Cell P“ ” “ ”, , oop Cell . (3.1)

The second constraint requires that people assigned to any section of CULTURE are also 
assigned to the core survey.

Sample Core Cell Sample A Cell Samp“ ” “ ”, , 2 lle BC Cell“ ”, . (3.2)

In addition, people cannot be assigned to a survey if they are not eligible for it.

Sample Core Cell if CULTURE Cell F“ ” “ ”, 0 . (3.3)

  



Constraints on Numbers of People Assigned to Surveys and Their Sections    15

Sample HEALTH Cell if HEALTH Cell F“ ” “ ”, 0 . (3.4)

Equations (3.5)–(3.8) place similar limitations on the people in the overlap between the 
CULTURE and HEALTH samples: 

Overlap Core Cell Sample HEALTH Cell“ ” “ ”, , . (3.5)

Overlap Core Cell Overlap A Cell Ov“ ” “ ”, , 2 eerlap BC Cell“ ”, . (3.6)

Overlap Core Cell if CULTURE Cell F“ ” “ ”, 0 . (3.7)

Overlap HEALTH Cell if HEALTH Cell F“ ” “ ”, 0 . (3.8)

Equations (3.3), (3.4), (3.7), and (3.8) do not actually appear in the linear program. 
Instead, linear programming software algebraically eliminates these variables from the prob-
lem before solving it. Because Eqs. (3.1), (3.2), (3.5), and (3.6) are replicated for each cell, they 
contribute thousands of constraints to each linear programming problem.  The Guard and 
Reserve inventory has about 20,000 cells (see Table 2.2). So Eqs. (3.1), (3.2), (3.5), and (3.6) 
contribute about 4  20,000 constraints to the Guard/Reserve problems, respectively. These 
are large linear programs.
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CHAPTER FOUR

Constraints to Ensure Adequate Precision of Estimates

This chapter presents the constraints on the sizes and compositions of the samples taken from 
the various marginal crosses. These constraints are intended to ensure adequate precision, as far 
as possible, for estimates of population parameters made for each cross.

Table 4.1 identifies all the three- and four-way crosstabs for which we planned to make 
estimates. Taking the first line, we partition all personnel who answer the core questions into 
categories (crosses) whose members have the same component (e.g., Air Force Reserve), the 
same grade (e.g., Airman), and the same AFSC family (e.g., Acquisition).

Note that every person in a given cross is in the same component. This is what allowed us 
to design the Reserve and Guard personnel sample separately from the Active Duty sample.

A considerable number of crosses have rather small personnel inventories. Of 905 crosses 
for Guard and Reserve personnel, 208 crosses contain fewer than 100 people; 121, fewer than 
50; and 54, fewer than 10. The very small Guard and Reserve crosses are crosses for General

Table 4.1
Marginal Crosses for Which We Make Population Estimates

Data Elements Held Constant

Assignment

Number of 
Nonempty 

Crosses 1 2 3 4

Core 86 Component Grade AFSC family

Core 71 Component Grade Major command

Core 24 Component Grade Gender

Core 59 Component Grade Race

Core 20 Component Race Gender

Core 168 Component AFSC family Race Gender

A 86 Component Grade AFSC family

A 71 Component Grade Major command

BC 20 Component Gender Faith

BC 60 Component Grade Faith

BC 50 Component Race Faith

HEALTH 190 Component Grade Installation
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Officers and crosses for pilots or special investigators who are female. There are only a few 
hundred in each of these categories in the entire Air Force, so it is not surprising that crosses 
containing subsets of these categories are small.

Formulas for Precision

The survey will provide responses to various questions by a sample of people from each mar-
ginal cross, and we wish to estimate from that sample how the entire population of that cross 
would have answered the same questions. For example, the survey could ask each respondent 
whether he or she preferred vanilla ice cream to chocolate. From their responses, we wish to 
estimate the proportion of the entire population of the cross that would have said they pre-
ferred vanilla if we had been able to perform a complete census.

Because we have only a sample rather than a census, our estimate is subject to error, usu-
ally measured by the variance of the estimate. We want to design the sample so the variances 
will be “small enough.” Generally, we will consider the difference between two different mar-
ginal crosses to be meaningful (that is, large enough to care about) if it is larger than some 
threshold. For example, we might consider it meaningful if vanilla is preferred to chocolate 
by as many as 5 percent more of the entire population of one cross than another. We want to 
design our sample so that meaningful differences are statistically significant.

The proper formulas for the variances depend on the sample selection method. Horvitz 
and Thompson (1952) presented a general variance formula for samples drawn from finite pop-
ulations without replacement and with (possibly) unequal selection probabilities. The explicit 
variance formulas for simple random samples and stratified random samples without replace-
ment that one sees in standard textbooks (e.g., Cochran, 1977; Kish, 1995) can be obtained as 
special cases of the Horvitz-Thompson formula. The Horvitz-Thompson formula contains the 
selection probabilities for pairs of individuals as well as the individual selection probabilities, 
and the pairwise probabilities are often difficult to work out. Some approximations are com-
pared in Stehman and Overton (1994).

All variance formulas, however, are functions of the sample design variables—
Sample (Assign,Cell ) and Overlap (Assign,Cell ), in our case—so imposing a limit on the size 
of the variance thus implicitly constrains the sample design variables. Unfortunately, these 
variance functions are not linear, so they cannot be used directly as constraints in a linear 
program. Software for nonlinear programming problems is less available and less robust than 
software for linear programming problems, so there is a considerable practical advantage to 
formulating linear versions of the variance constraints.

We base our linear precision constraints on two features common to all the variance for-
mulas.1 First, the variance decreases as the sample size increases (often, the variance is inversely 

1 This implies that our precision constraints can be tuned to reflect any variance formula and therefore any method for 

selecting the sample.
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proportional to sample size). Second, for equal sample sizes, the variance is smaller when the 
sample more nearly mirrors the cross’s population. To capture the first feature, we constrain 
the size of the sample from a cross to exceed a specified threshold. To capture the second fea-
ture, we insist that the sample from each cell in the cross exceed a specified proportion of the 
cell’s population.

Admittedly, these linear constraints only roughly simulate the effects of the nonlinear 
constraints they replace. But the nonlinear constraints only roughly produce the effects desired 
of them—namely, that the variances of estimates made from the survey responses will be 
“small enough.” The variances depend on more than the sample design. They also depend on

the response rate (the fraction of those invited to take the survey who actually do so)
the possible answers to a survey question (e.g., yes or no, pick a number from 1 to 7, con-
tinuously variable answers)
the distribution of answers actually given (e.g., if almost all respondents in a cross give the 
same answer to a question, the estimate for the entire population of the cross will have a 
very small variance).

Some of these factors cannot be known until after the survey has been fielded and the 
responses collected, so one cannot specify the constraints on survey design that will yield 
exactly the desired variances. Usually, they are chosen to ensure that the variances will be 
no larger than desired, but then they will tend to constrain the sample design more severely 
than necessary. Thus, whether one uses the linear or nonlinear constraints, they are always 
approximate.

Constraints on Sample Size by Marginal Cross

Constraints based on the first feature require that the number of people from a marginal cross 
who respond to the survey should, if possible, equal or exceed a specified size. There are three 
new elements to consider.

Response Rates

First, we are interested in the number of responses, not the number assigned. We define

SRR(Assign) = Response rates for Sample variables.

ORR(Assign) = Response rates for Overlap variables.

Table 4.2 shows the response rates that we assumed.

•
•

•
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Table 4.2
Assumed Response Rates

Variable Assignment Survey Response Rate

Sample Core CULTURE 0.5

Sample A CULTURE 0.5

Sample BC CULTURE 0.5

Sample HEALTH HEALTH 0.5

Overlap Core CULTURE 0.25

Overlap A CULTURE 0.25

Overlap BC CULTURE 0.25

Desired Responses per Marginal Cross

Second, we need to specify the desired number of responses for each cross. We define

Rqmt(Cross) = Required responses in this cross to achieve the desired precision.

The HEALTH survey team provided us with the numbers of people in each cross that 
they wanted to participate in their survey, and we simply multiplied those numbers by the 
assumed response rate.

The CULTURE survey team decided that a sample of NomCross = 550 responses from a 
very large (effectively infinite) cross would provide adequate precision. We then applied a finite 
population correction (fpc) that reduced the desired responses. The formula is

1 1 1

n N NomCross
, (4.1)

where n is the number of responses needed from a cross of size N to give the same precision as a 
simple random sample of size NomCross taken from a very large cross.2 Of course, the number 
of responses n cannot be larger than the cross size N multiplied by the response rate (at most, 
0.5). Thus for any cross smaller than NomCross, we can invite the entire population of the cross 
to participate and we still will not have the desired number of responses.3

2 This will be true if the people in a cross who respond to the survey constitute a random sample of the population of the 

cross.

3 A reviewer questioned whether our use of the fpc was appropriate. The Air Force personnel file changes over time as 

people enter and leave the Air Force, change jobs, receive promotions, and so on. It is correct to use the fpc only if we wish 

to make inferences about a snapshot of the Air Force population. The reviewer suggested that instead we should be making 

inferences about future snapshots as well as the current one (i.e., a superpopulation). The superpopulation is theoretically 

infinite, and therefore we should not be using an fpc. Others have made similar arguments (see Elliott, Zaslavsky, and 

Cleary, 2006). We will not comment on the merits of this suggestion, since our use of the fpc is a matter of historical fact 

and cannot be undone. Instead, we present an estimate of the difference it would have made if we had not used the fpc. In 

the case we selected as our final sample design, the number of responses calculated by our method was strictly between the 

required responses calculated with and without the fpc for only 62 out of 703 marginal crosses. Dropping the fpc should 

affect results for these crosses only. We calculated a total requirement for these 62 crosses of 25,000 responses with the fpc 

and 31,000 responses without. Our method calculated 27,000 actual responses. In the remaining 641 crosses, the number 
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“If Possible” 

The third new element is that we may not be able to assign enough people to a survey/section 
to obtain the desired number of responses. To allow for fewer responses than desired, we intro-
duce additional variables:

Short(Cross) = The amount by which responses in this cross fall short of the desired number.

Constraints on Sample Size by Cross 

We can now write the constraint on the overall size of the sample for each cross. We define

Assign(Cross) = Assignment people must have to be in this cross’s population.

Contains(Cross,Cell) = 1 if Cross contains the people in Cell ; 0 otherwise.

Then,

Contains Cross Cell Sample Assign Cross Ce, , lll SRR Assign Cross

Contains C

Cell

rross Cell Overlap Assign Cross Cell OR, , RR Assign Cross

Rqmt Cross Shor

Cell

tt Cross . (4.2)

Note the appearance of Assign (Cross), rather than the unmodified Assign, to specify which 
elements from the arrays Sample, Overlap, SRR, and ORR to include in the constraint. This 
indicates that wherever a value of Assign is needed in the expression, it should be the value 
associated with Cross.

Of course, we want to keep the Short(Cross) variables as small as possible. Our first step 
in designing a sample, therefore, is to solve a linear program with the objective of minimizing 
the sum over all crosses of Short(Cross).

Constraints on Sample Size by Cell

A sample from a cross is called proportionate if it includes the same fraction of people from 
each cell in the cross. When the sample departs from proportionality—when some cells are 
under- or oversampled—it provides less precision than a proportionate sample of the same size. 
This effect is called the probability design effect. Adams et al. (2003) tell us it is most often seen 
calculated in terms of the analysis weights w

k
= 1/p

k
, where p

k
 is the probability that individual 

k is in the sample. We express this effect as an equivalent sample size—the size of a uniformly 
weighted sample that would yield the same precision as a sample of size n with nonuniform 
weights:

of responses calculated by our method was either strictly smaller than the requirement calculated using the fpc (291 crosses) 

or at least as large as the requirement calculated without the fpc (350 crosses). Dropping the fpc from the calculation of 

required responses should have no effect on these crosses. Therefore, we do not think our use of the fpc made much of a 

difference in the design of the sample.
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ESS

w

w

k
k

k
k

2

2
. (4.3)

The summation is taken over the n individuals in the sample. It reaches a maximum of n when 
the weights w

k
 are all equal—i.e., for a proportionate sample.

All individuals in the same cell will have the same selection probability p
k
 and hence the 

same weight w
k
. According to Eq. (4.3), the effective sample size is decreased much more by 

having one or two cells with very low sampling fractions than it is increased by having one 
or two cells with very high sampling fractions. In other words, it does not help much to over-
sample a few cells. But it matters a lot if a few cells are undersampled.

Our Fondest Wish

We therefore impose lower limits on the number of people in each cell who are assigned to 
each marginal cross. These lower limits will be strictly positive unless user requirements dictate 
otherwise. Initially, we calculate the number of responses we need from each cell to ensure 
that every cross contains a proportionate sample of the desired size. We calculate the size of a 
cross as

Size Cross Contains Cross Cell Pop Cell
C

,
eell

. (4.4)

In a proportionate sample of the desired size, the number of responses that Cell should con-
tribute to Cross is

PropSam Cross Cell
Rqmt Cross

Size Cross
, CContains Cross Cell Pop Cell, . (4.5)

The responses we receive from Cell will be distributed over the various assignments. For 
each assignment, we want to receive enough responses to meet the needs of all crosses with 
that assignment. Letting AssignV stand for any value of the assignment (i.e., Core, A, BC, or 
HEALTH), we write

Wish AssignV Cell Max
Cross Assign Cross As

,
ssignV

PropSam Cross Cell, . (4.6)

Taking stock, Wish(AssignV,Cell  ) is the number of responses we need from Cell for each 
AssignV for our sample to include a proportionate subsample of the desired size in every mar-
ginal cross. Many crosses, of course, may include extra responses.

Reducing Overall Demands

Generally, it will not be possible to provide as many as Wish (AssignV,Cell ) responses from 
all cells for all assignments. The CULTURE and HEALTH surveys compete for people in 
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each cell, and within the CULTURE survey, the sections compete as well. Therefore, we have 
introduced several parameters—earlier, we dubbed them design levers—that govern the way we 
allocate the shortage of responses from a cell among the assignments.

The first design lever specifies the minimum fraction of a proportionate subsample that 
we are willing to settle for. We define

WishFrac = The minimum fraction of a proportionate sample that must—if at all possible—
be included in each marginal cross.

Allocating Shortfalls Between Surveys

Reducing our overall demands may help, but there may be cells from which it is not possible to 
provide WishFrac Wish(AssignV,Cell ) responses to all assignments AssignV. For these cells, we 
specify two more design levers: one to govern how the remaining shortfall is allocated between 
the CULTURE and HEALTH surveys; the other to govern how any shortfall within the 
CULTURE survey is allocated among the sections.

We denote by Hprio the design lever we use to allocate shortfalls between CULTURE 
and HEALTH. Hprio should be between 0 and 1, with 0 corresponding to absolute priority 
for the CULTURE survey and 1 corresponding to absolute priority for the HEALTH survey. 
Giving the HEALTH survey “absolute priority” means assigning the maximum number 
of individuals possible from Cell to the HEALTH survey, up to the number that will yield 
WishFrac Wish(“HEALTH”,Cell) responses. The CULTURE survey is left to cope the best it 
can. Giving the CULTURE survey absolute priority is defined similarly. We denote

Hmax (“Core”,Cell) = The maximum number of responses from Cell that can be 
obtained for the CULTURE survey if the HEALTH survey is 
given absolute priority.

Hmax(“HEALTH”,Cell) = The maximum number of responses from Cell that can be 
obtained for the HEALTH survey if the HEALTH survey is 
given absolute priority.

Cmax(“Core”,Cell) = The maximum number of responses from Cell that can be 
obtained for the CULTURE survey if the CULTURE survey is 
given absolute priority.

Cmax(“HEALTH”,Cell) = The maximum number of responses from Cell that can be 
obtained for the HEALTH survey if the CULTURE survey is 
given absolute priority.

It is straightforward to calculate the Hmax and Cmax variables. We have suppressed the 
index Cell in the following equations in the interest of readability, but remember that there is 
one set of these equations for each Cell.

Hmax HEALTH MIN
SRR HEALTH Pop

WishFrac
“ ”

“ ”

Wish HEALTH“ ”
. (4.7)
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Cmax Core MIN

SRR Core Pop

WishFrac MAX
“ ”

“ ”

WWish Core

Wish A Wish BC

“ ”

“ ” “ ”2

. (4.8)

Hmax Core MIN

Cmax Core

ORR Core Hma
“ ”

“ ”

“ ” xx HEALTH

SRR Core SRR HEALTH Pop

“ ”

“ ” “ ” HHmax HEALTH

SRR HEALTH

“ ”

“ ”

. (4.9)

Cmax HEALTH MIN

Hmax HEALTH

SRR HEALTH
“ ”

“ ”

“ ” SRR Core Pop Cmax Core

SRR Core

“ ” “ ”

“ ” ORR Core“ ”

. (4.10)

Then we use the design level Hprio to form weighted averages of these two extreme 
allocations—absolute priority for CULTURE and absolute priority for HEALTH. The results 
are the minimum responses that we insist each survey receive from Cell:

ResMin Core Cell Hprio Hmax Core Cell“ ” “ ”, ,

1 Hprio Cmax Core Cell“ ”, . (4.11)

ResMin HEALTH Cell Hprio Hmax HEALTH Ce“ ” “ ”, , lll

Hprio Cmax HEALTH Cell1 “ ”, . (4.12)

For each cell, we have two more constraints for the linear program:

SRR Core Sample Core Cell ORR Core“ ” “ ” “ ”, Overlap Core Cell

ResMin Core Cell

“ ”

“ ”

,

, . (4.13)

SRR HEALTH Sample HEALTH Cell ResMin“ ” “ ” “, HHEALTH Cell”, . (4.14)
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Allocating CULTURE Shortfalls Among Sections

We do this just as we allocated shortfalls between surveys. Denote by BCprio the design lever 
that allocates shortfalls between section A and sections B and C of the CULTURE survey. The 
lever BCprio should be between 0 and 1, with 0 corresponding to absolute priority for section 
A and 1 corresponding to absolute priority for sections B and C. Giving section A “absolute 
priority” means assigning the maximum possible number of these responses to section A, up to 
WishFrac Wish(“A”,Cell) responses. Sections B and C receive whatever is left. Giving sections 
B and C absolute priority is defined similarly. We always divide responses equally between sec-
tions B and C. Define:

Amax(“A”,Cell ) = The maximum number of responses from Cell that can be obtained for 
section A of the CULTURE survey if it is given absolute priority.

Amax(“BC”,Cell) = The maximum number of responses from Cell that can be obtained 
for sections B and C of the CULTURE survey if section A is given 
absolute priority.

BCmax(“A”,Cell) = The maximum number of responses from Cell that can be obtained 
for section A of the CULTURE survey if sections B and C are given 
absolute priority.

BCmax(“BC”,Cell) = The maximum number of responses from Cell that can be obtained 
for sections B and C of the CULTURE survey if they are given abso-
lute priority.

It is straightforward to calculate the Amax and BCmax variables:

Amax A Cell MIN
ResMin Core Cell

WishFr
“ ”

“ ”
,

,

aac Wish A Cell“ ”,
. (4.15)

BCmax BC Cell MIN

ResMin Core Cell

“ ”

“ ”

,

,

2

WishFrac Wish BC Cell“ ”,

. (4.16)

Amax BC Cell MIN

BCmax BC Cell

ResMin C
“ ”

“ ”

“
,

,

oore Cell Amax A Cell” “ ”, ,

2

. (4.17)
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BCmax A Cell MIN
Amax A Cell

ResMin Cor
“ ”

“ ”

“
,

,

ee BCmax BC Cell” “ ”2 ,
. (4.18)

Then we use the design level BCprio to form weighted averages of these two extreme alloca-
tions. The results are the minimum responses that we insist each section receive from Cell :

ResMin A Cell BCprio BCmax A Cell

B

“ ” “ ”, ,

1 CCprio Amax A Cell“ ”, .. (4.19)

ResMin BC Cell BCprio BCmax BC Cell“ ” “ ”, ,

1 BCprio Amax BC Cell“ ”,  . (4.20)

We note that to allocate the shortfall equally among the three sections, BCprio should be 2/3, 
not 1/2.

For each cell we have two more constraints for the linear program:

SRR A Sample A Cell ORR BC Overlap“ ” “ ” “ ”, ““ ”

“ ”

A Cell

ResMin A Cell

,

, . (4.21)

SRR BC Sample BC Cell ORR BC Overl“ ” “ ” “ ”, aap BC Cell

ResMin BC Cell

“ ”

“ ”

,

, . (4.22)

Equations (4.15) through (4.22) are correct only if SRR(“A”) = SRR(“BC”) = SRR(“Core”) 
and ORR(“A”) = ORR(“BC”) = ORR(“Core”). We leave the derivation of more general formulas 
as an exercise for the reader.
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CHAPTER FIVE

Tradeoffs Among Samples of Different Designs

To begin this chapter, we describe the algorithm for generating a sample. Merely because 
the algorithm uses linear programming—a methodology that solves an optimization prob-
lem—to design a sample does not mean that the sample is “optimal” in a real-world sense. It 
is, of course, optimal in the formal sense that it is a solution to an optimization problem. But 
the optimization problem that it solves is only an approximation of the real-world problem we 
actually want to solve.

We therefore need to generate multiple sample designs and compare them in order to 
choose the one we like best. To generate different samples, we execute the algorithm repeatedly 
with different values for the design levers described in Chapter Four. To aid in comparing dif-
ferent samples, we define summary measures of sample quality.

The Sample Design Algorithm

As described earlier, we design a sample by solving two linear programs in sequence. The first 
linear program finds the values of the variables Sample(Assign,Cell ), Overlap(Assign,Cell ), and 
Short(Cross) that

Minimize Short Cross

s t Eqs

Cross

. . . ( . ) (3 1 4.. ), ( . ), ( . ), ( . ),( . )2 4 13 4 14 4 21 4 22

Sample Assignn Cell

Overlap Assign Cell

Short Cross

,

,

0

0

0. (5.1)

This linear program finds a sample for which the total shortfall from desired sample sizes in all 
the marginal crosses is a minimum.
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Now let Sval (Cross) be the value of Short (Cross) obtained by solving Eq. (5.1). The 
second linear program then finds new values of the variables Sample (Assign,Cell ),
Overlap(Assign,Cell ), and Short(Cross) that

Minimize

Sample Core Cell

Overlap Core C

“ ”

“ ”

,

, eell

Sample HEALTH Cell
Cell

“ ”,

ss t Eqs. . . ( . ) ( . ),( . ),( . ),( . ),3 1 4 2 4 13 4 14 4 21 (( . )4 22

Short Cross Sval Cross

Sample Assign,,

,

Cell

Overlap Assign Cell

Short Cross

0

0

0. (5.2)

Equation (5.2) selects a sample from among all the samples that achieve the minimum 
shortfalls found by the first linear program. The sample it picks is the one that sends out the 
fewest number of requests for individuals to participate in one of the surveys. Note that if an 
individual is asked to participate in both surveys (i.e., is in the overlap), he or she is counted 
twice.

Generating Multiple Samples

To generate different samples, we execute the algorithm repeatedly for different values of the 
design levers:

WishFrac (minimum fraction of a proportionate sample of the desired size that must—if 
at all possible—be included in each cross)
Hprio (relative priority given to the HEALTH survey compared with the CULTURE 
survey)
BCprio (relative priority given to sections B and C of the CULTURE survey compared 
with section A). Allow overlap (set ORR (“A ”) = ORR (“BC ”) = ORR (“Core ”) = 0.25) 
or do not allow overlap (set ORR (“A”) = ORR (“BC”) = ORR (“Core”) = 0) between the 
CULTURE and HEALTH surveys.

Summary Measures of Sample Quality

We use two types of summary measure, one type for sample sizes and one type for precision. 
We will be interested in three sample size measures (Table 5.1).

•

•

•
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Table 5.1
Summary Sample Size Measures

Measure Definition

Number of individuals participating in only the
CULTURE survey

Number of individuals participating in both 
surveys

Number of individuals participating in the HEALTH survey 
(includes the overlap)

For summary measures of precision, we use counts of “problem crosses.” A problem cross 
is a marginal cross whose effective sample size, computed using Eq. (4.3), is smaller than 
a specified fraction (called the problem cross criterion) of the required number of responses 
(denoted by Rqmt(Cross)). There are four problem cross measures of interest, one for each pos-
sible assignment (i.e., Core, A, BC, and HEALTH).

Exploring the Limits

First, we generate samples that give each survey, in turn, absolute priority over the other. We 
give the HEALTH survey absolute priority by setting Hprio = 1, and the CULTURE survey 
absolute priority by setting Hprio = 0. If we also set WishFrac = 1, we will generate the sam-
ples that provide the greatest precision for each survey group. For these samples, we allow no 
overlap.

The Best Possible HEALTH Sample

When Hprio = 1 and WishFrac = 1, our model gives the HEALTH survey all the precision 
it wants. Every cross with Assign(Cross) = “HEALTH” has a proportionate subsample with 
exactly the desired size, so there are no problem crosses for any criterion. The number of indi-
viduals participating in the HEALTH survey (Hpart) is 36,040.

The Best Possible CULTURE Sample

When Hprio = 0 and WishFrac = 1, every cross with Assign(Cross) = “Core” contains a propor-
tionate subsample of the desired size. Many crosses have larger samples than desired, and the 
larger sample is often not proportionate.

However, there are crosses with Assign(Cross) = “A” and “BC” that do not contain propor-
tionate subsamples of the desired size. The BCprio lever offers a way to trade off the sections 
against each other. Table 5.2 compares six samples generated for a range of values of BCprio.

Note that changes in BCprio do not affect the sample size. Changing BCprio does 
affect the total number of problem crosses, using any problem cross criterion. But for 
any criterion, the total number of problem crosses is close to its minimum when BCprio = 2/3. 
This is also the value of BCprio that gives the three sections equal weight. We adopt this value 
in all subsequent cases.

Cpart Sample Core Cell
Cell

“ ”,

Opart Overlap Core Cell
Cell

“ ”,

Hpart Sample HEALTH Cell
Cell

“ ”,
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Table 5.2
Tradeoff Between the CULTURE Survey’s Section A and Sections B 
and C (Hprio = 0, WishFrac = 1, No Overlap)

BCprio 0 0.333 0.5 0.667 0.8 1

Sample Size Measures

Cpart 121,861 121,711 121,968 122,212 122,326 122,580

Total Problem Crosses (Sections A + B + C)

Criterion

0.2 222 24 0 0 0 150

0.4 236 106 74 75 66 156

0.6 246 134 176 203 221 255

0.8 258 237 251 262 275 281

1.0 260 321 306 320 315 299

Breakout of Problem Crosses for Criterion = 0.8

Section
A 0 71 103 120 143 157

B or C 129 83 74 71 66 62

NOTE: To generate the samples discussed in this table, we allow no overlap. 
But when the CULTURE survey receives absolute priority (Hprio = 0), it does 
not matter whether overlap is allowed.

There is a total of 157 marginal crosses with a section A assignment, and 130 crosses each 
assigned to sections B and C (see Table 4.1). Table 5.2 shows that it is possible to eliminate all 
problem crosses in section A, but because sections B and C compete with one another, even set-
ting BCprio = 1 leaves half of section B and C crosses as problem crosses at a criterion of 0.8.

We next varied the lever WishFrac to see if we could generate a better sample for the 
CULTURE survey. We anticipated that reducing WishFrac would increase the number of 
problem crosses for large values of the problem cross criterion, but we thought that it might 
result in fewer problem crosses at lower criteria. That is, there might be more crosses that fail 
to contain a subsample with all cells equal to or larger than, say, 90 percent of a proportionate 
sample of the desired size. But this could be compensated by more crosses containing a sub-
sample with all cells equal to or larger than 60 percent of the desired size. This could happen 
because reducing WishFrac makes more samples feasible—i.e., more samples satisfy all the 
constraints of the linear program. However, the linear programs we have formulated do not 
minimize the number of problem crosses for any criterion. Only by experimenting can we dis-
cover whether changing WishFrac produces better samples. Table 5.3 shows the results.

The one consistent effect of reducing WishFrac is reducing the sample size.1 The 
CULTURE survey team showed no excitement at this result; they judged maintaining preci-
sion to be more important than reducing the sample size. Since people were invited to partici-

1 There is the anomalous effect on the number of problem cells for criterion = 0.4. Almost surely there are multiple solu-

tions to the sequence of linear programs (Eqs. (5.1) and (5.2)). There could well be solutions other than the ones our method 

happened to generate that would not show this anomalous behavior.
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Table 5.3
Effect of WishFrac on the CULTURE Survey Sample
(Hprio = 0, BCprio = 2/3, No Overlap)

WishFrac 1.0 0.8 0.6 0.4

Sample Size

Cpart 122,212 112,763 104,693 98,928

Number of Problem Crosses

Criterion

0.2 0 0 0 0

0.4 75 70 44 92

0.6 203 207 224 273

0.8 262 279 350 372

1.0 320 374 432 484

pate by email, the cost of the survey was largely independent of sample size (excluding the 
value of participants’ time). Therefore, we set WishFrac = 1 in all subsequent designs.

Reconciling CULTURE and HEALTH

It is now time to reconcile the two survey samples with each other. Table 5.4 shows the effect 
of varying the priority given to the HEALTH survey from 0 (CULTURE receives absolute

Table 5.4
Effect of Hprio on the CULTURE and HEALTH Survey Samples 
(WishFrac = 1, BCprio = 2/3, No Overlap)

Hprio 0 0.25 0.5 0.75 1

Sample Sizes

Cpart 122,212 116,649 111,160 105,731 100,327

Hpart 16,553 21,944 27,138 32,081 36,040

CULTURE Survey Problem Crosses (out of 715 total)

Criterion

0.2 0 0 0 16 335

0.4 75 112 131 163 415

0.6 203 218 233 291 478

0.8 262 270 335 416 515

1.0 320 426 450 476 552

HEALTH Survey Problem Crosses (out of 190 total)

Criterion

0.2 190 0 0 0 0

0.4 190 124 0 0 0

0.6 190 184 79 0 0

0.8 190 190 182 56 0

1.0 190 190 190 190 0
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priority) to 1 (HEALTH receives absolute priority). It seemed to the survey team that the 
CULTURE survey lost a great deal of precision by giving much priority to the HEALTH 
survey, but the HEALTH survey had rather little precision unless it received a very high 
priority.

This observation persuaded the survey team to investigate the effect of allowing the two 
samples to overlap. To recapitulate, participants in the overlap responded to the HEALTH 
survey at a 50-percent rate (the nominal response rate), but they responded to the CULTURE 
survey at only a 25-percent rate. Table 5.5 shows the results. 

Comparing Tables 5.4 and 5.5, one sees that the CULTURE survey loses much less 
precision in the samples with overlap than in those without. The precision of the HEALTH 
survey is hardly affected by the overlap. The total number of participants (Cpart + Hpart) is 
hardly affected by either the priority given to the HEALTH survey (Hprio) or by whether or 
not the samples are allowed to overlap, ranging from just under 136,000 to just under 139,000. 
The total number of surveys distributed, (Cpart + Opart + Hpart), is somewhat more variable, 
exceeding 163,000 in one sample.

Based on these runs, plus some additional runs not shown here, the survey team 
decided to construct the CULTURE and HEALTH samples using the design for WishFrac = 1, 
Hprio = 0.7, and BCprio = 2/3, with overlap permitted. 

Table 5.5
Effect of Hprio on the CULTURE and HEALTH Survey Samples with 
Overlap (WishFrac = 1, BCprio = 2/3)

Hprio 0 0.25 0.5 0.75 1

Sample Sizes

Cpart 116,419 112,172 107,970 103,887 99,800

Opart 11,790 15,860 19,835 23,656 27,656

Hpart 22,158 26,124 29,919 33,393 36,040

CULTURE Survey Problem Crosses (out of 715 total)

Criterion

0.2 0 0 0 0 0

0.4 75 93 112 117 131

0.6 203 207 216 221 228

0.8 262 264 267 281 327

1.0 318 418 423 432 446

HEALTH Survey Problem Crosses (out of 190 total)

Criterion
0.2 190 0 0 0 0

0.4 190 90 0 0 0

0.6 190 167 63 0 0

0.8 190 187 160 44 0
1.0 190 190 190 190 0
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CHAPTER SIX

Sample Selection

We have now selected a sample design, as specified by the arrays Sample (Assign,Cell ) and 
Overlap (Assign,Cell ). In this chapter, we describe how we constructed a list of individuals from 
the Air Force personnel file (see Chapter Two) who will be invited to take the survey.

As stated previously, our method does not draw a simple random sample of predetermined 
size from each cell. The presence of small cells makes that method impractical. For example, a 
person in a cell of size one can be allocated to only one section of one survey, leaving the other 
surveys/sections with no individuals from that cell. Instead, our method assigns each member 
of the population to a survey/section with a probability equal to the expected size of the sample 
from his cell—given by Sample (Assign,Cell ) or Overlap (Assign,Cell )—divided by the cell size 
(given by Pop (Cell )). The method ensures that the size of the sample actually taken from a large 
cell is close to the expected sample size for that cell, so if there were no small cells we would 
very nearly obtain a stratified random sample. The method also ensures that the overall size of 
the sample is very close to the expected size.

We used a variant of systematic sampling (e.g., see Cochran, 1977, Chapter 8; or Kish, 
1995, Chapter 4). In the usual version of systematic sampling, one takes every kth member of 
the population after a random start. This version selects a proportion (1/k) of the population, 
with each member having the same selection probability.

In our problem, however, members of the population are not simply selected or not 
selected. Rather, there are eleven possible “bins” to which they can be assigned. Moreover, 
the probability for each assignment is not the same for all members (though the probability 
is the same for members in the same cell). Our variant of systematic sampling accommo-
dates these complexities. Figure 6.1 shows the bins to which members can be assigned and 
the assignment probabilities. In addition, we assign members to bins in stages, and the figure 
shows the hierarchy of stages we used. It will become clear why we chose to assign members to 
bins in stages rather than in a single step.

Assigning Members to Bins

As the selection algorithm processes each member of the population in turn, it maintains a 
running score for each bin. Roughly, the score for a bin represents the difference between the 
expected number of members assigned to the bin up to that point and the actual number
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Figure 6.1
Bins, Their Probabilities, and Their Stages of Assignment
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assigned. A negative score means that more people than expected have been assigned to the bin 
to this point. A positive score means that fewer than expected have been assigned. The bin with 
the largest score is thus the best candidate to receive the member currently in process.

To illustrate, consider the first stage, which assigns the member to CultureOnly, HEALTH,
or NotSelected. We denote the scores of these bins at the time we start processing this member 
by Score(CultureOnly), Score(HEALTH), and ScoreNotSelected). The algorithm is as follows:

Calculate a test quantity for each bin by adding the probability for each assignment to 
the current score. That is, Test (CultureOnly) = Score (CultureOnly) + P (CultureOnly), 
and similarly for the other bins.

1.
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Put the member in the bin with the largest test quantity, ignoring any bins with zero 
probabilities.1 Suppose that this is the CultureOnly bin.
Calculate the new score for each bin. The new score for the bin that received 
the member equals the test quantity less 1. The new score for any other bin is 
equal to its test quantity. Thus, NewScore (CultureOnly) = Test (CultureOnly) – 1, while 
NewScore (HEALTH ) = Test (HEALTH ).

If the member is assigned to a bin that requires a further stage of assignment, we follow 
exactly the same procedure but with the probabilities appropriate to the bins now being con-
sidered (see Figure 6.1).

Some Facts About Bin Scores

If we set all the scores to 0 before processing the first member of the population, the score a bin 
has attained after the Nth member is processed will equal the difference between the expected 
number and actual number assigned to the bin up to that point. By selecting nonzero start-
ing scores at random, however, we can change the assignments randomly. This is analogous to 
selecting a random starting point in the usual version of systematic sampling.

However, if a bin’s starting score is too large, a string of members from the beginning of 
the personnel file will be assigned to that bin, even if its probability is small. Conversely, if the 
score is a large negative number, no members will be assigned until deep into the personnel file, 
even if its probability is large. The starting scores, therefore, should all be between –1 and +1. 
It is also useful to insist that the sum of starting scores for the bins involved at each stage be 0. 
If these conditions are met and we are assigning members to no more than three bins at any 
stage, we can prove that the scores will all remain between –1 and +1. This need not be true 
if there are four or more bins at a stage, and this is why we chose to assign members to bins in 
stages, rather than in a single step.

Theorem 1: The sum of scores for the bins involved at each stage remains 0, no matter 
how many members have been assigned.

Proof: By assumption, the sum of scores starts at 0. When we assign a member, we add 
each bin’s probability to its score, thus adding 1 to the sum of scores. Then we subtract 1 from 
one of the scores. The net change in the sum of scores is therefore 0. QED.

Theorem 2: If no more than three bins are involved at a stage, none of their scores can 
ever drop below –1.

Proof: Before assigning the first member, all scores are at least as large as –1, and the scores 
for bins involved at each stage sum to 0. Suppose this remains true after assigning member 
N – 1. We show that it is still true after assigning member N.

1 We found that a bin with zero probability for the current member could nevertheless have the highest score. This can 

happen when the bin in question has had zero probability for a sequence of members. Those members were assigned to other 

bins, lowering their scores and eventually leaving the score of the bin in question as the highest.

2.

3.
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There are three cases: If only one of the three probabilities is positive, its bin is the one 
to which the member must be assigned. But its new score is its old score plus its probability 
(which must be 1) minus 1, and hence is unchanged. The scores of the one or two bins with 
probabilities of 0 are also unchanged.

If exactly two probabilities are positive, then the sum of their two test quantities must be 
nonnegative. (The sum of the three test quantities equals 1, and the odd test quantity, for the 
bin with probability 0, cannot be larger than 1.) So the larger of the two “in-play” test quanti-
ties is positive. The member is assigned to that test quantity’s bin, and the new score, which 
equals that test quantity minus 1, cannot be smaller than –1.

If all three probabilities are positive, then because the sum of the test quantities is +1, the 
maximum test quantity must be positive. The member is assigned to that test quantity’s bin, 
and the new score, which equals that test quantity less 1, cannot be smaller than –1. QED.

Theorem 3: If no more than three bins are involved at a stage, none of their scores can 
ever rise above +1.

Proof: Before assigning the first member, all scores are less than or equal to +1, and the 
scores for bins involved at each stage sum to 0. Suppose this remains true after assigning 
member N – 1. We show that it is still true after assigning member N.

Because the sum of scores after assigning member N – 1 is 0, the sum of test quantities 
just before assigning member N is 1. If one of the scores after assigning member N is going 
to exceed 1, then two test quantities must exceed 1. (It is not possible for any test quantity to 
exceed 2, since the score from which it was calculated would have to exceed 1.) The third test 
quantity must therefore be smaller than –1. But this is impossible, since it cannot be smaller 
than the score from which it was calculated, and that score was at least as large as –1. QED.

The Order of Assigning Members

To obtain the best agreement between the expected sample sizes per cell calculated by the 
linear program and the number of people in a cell assigned to each bin, we sort the personnel 
file to put all people in each cell in sequence. However, we want people in large cells to be listed 
in a random order. And we want the order of very small cells (e.g., cells of containing only 
one person) to be random. To accomplish these objectives, we randomly assign each person 
a person identification number (PID). We also assign each cell a cell identification number 
(CID), constructed as the sum of the cell size Pop(Cell) plus a random number between 0 and 
1. Then we sort the personnel file first by CID from large to small, and within CID by PID.

The Performance of the Selection Algorithm

The fact that the people in a cell are in an unbroken sequence in the file guarantees that the 
number of people in each bin at the first stage of the assignment hierarchy (see Figure 6.1) 
is within 2 of the number determined by the linear program. Just before assigning the first 
member of the cell and just after assigning the last, the number assigned to a bin will be within 
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1 of the expected number. If the number assigned is high by 1 at the start (end) and low by 1 at 
the end (start), the number of people assigned to the bin will be 2 less (more) than determined 
by the linear program. Bins at later stages of the assignment hierarchy can have larger errors. 
The maximum error for a cell is two per stage.

Since a marginal cross is made up of many cells, the maximum error for a cross can be 
larger. Figure 6.2 shows the error—i.e., the difference between the responses provided by 
the sample our algorithm selected minus the responses called for by the linear programming 
solution—as a function of the responses called for by the linear programming solution. Each 
data point represents a marginal cross. We use a logarithmic scale for the horizontal axis 
because the range of cross sizes is so great. Crosses for which the linear program called for less 
than one response are omitted. The largest absolute difference is less than 15 responses. There 
are some large percentage differences, but they occur only for crosses from which the linear 
program took very small samples.

Will the Sample Provide Adequate Precision?

In Chapter Four, we described constraints designed to ensure that meaningful differences 
between crosses would be statistically significant. For example, suppose we consider it mean-

Figure 6.2
Comparison of Responses per Cross, Sample Versus Linear Program
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ingful if vanilla is preferred to chocolate by as many as 5 percent more of the entire population 
of one cross than of another. Then, upon analyzing the survey responses, we want differences 
of 5 percent to be statistically significant (usually at a 90- or 95-percent confidence level).

However, the variances we calculate as we analyze the survey responses will depend on 
factors that were unknown when we designed the sample and fielded the survey. For exam-
ple, if the actual response rates are lower (higher) than the response rates assumed when we 
designed the sample, the variances will be higher (lower). Or, if respondents in a cross show 
broad agreement (disagreement) in their answers to a given question, the estimates of how the 
entire population of the cross would answer that question will have a small (large) variance.

In addition, we imposed constraints to ensure adequate precision of estimates we antici-
pated we were going to make. Once we begin analyzing the survey responses, we may discover 
that some quantities we did not anticipate estimating are much more interesting.

In short, we will inevitably judge the adequacy of the sample using standards that we do 
not know and hence cannot apply at the time we design the sample. We can only guess what 
those standards will be—as informed a guess as possible, of course—design the sample to our 
guess, and let the chips fall where they may.
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